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1. Introduction

Many aspects of human learning can be modeled as a gradual process of concept for- . K

mation. In this view, the agent observes a succession of objects or instances from which he

induces a set of concepts that summarize and organize his experiences. This model differs

from the simpler task of 'learning from examples' along two dimensions. First, the con-

cept formation process does not rely on a tutor to presort objects into alternative classes.

Second, in concept formation the agent must acquire a hierarchy of concept descriptions,

rather than the single level that is usually assumed iii learning from examples.

Research on conceptual clustering (Michalski & Stepp, 1983; Fisher & Langley, 1986)

addresses both of these issues, but existing clustering systems require all data at the

outset. We believe that much human concept learning is incremental and that models

of this process should reflect that fact. We will reserve the term concept formation for

incremental methods of conceptual clustering. In addition to modeling human behavior,

there are practical reasons for preferring incremental systems to nonincremental ones: they

let one efficiently incorporate new instances into memory as they are encountered; and they

have the potential for responding to changing environments or concept drift (Schlimmer

Granger, 1986).

Concept formation can be viewed as a mechanism for automatically organizing memory.

It accepts experiences as input - either directly from the perceptual system or after they

have been processed by other modules - and it stores them in a conceptual hierarchy,

modifying that hierarchy and its component concepts at the same time. Thus, concept

formation is intimately linked to recognition, though the products of concept formation

can be used in other aspects of intelligent behavior such as problem solving and language

understanding.

Below we examine the concept formation task from two different viewpoints - in terms

of conceptual hierarchies and in terms of heuristic search. With these metaphors as back-

ground, we then examine three earlier systems that have modeled this process - EPAm,

*" UNIMEM and COBWEB. After this we introduce CLASSIT, a new model of concept forma-

tion that borrows ideas from previous work but which also improves upon it. We include

a simple example to clarify CLASSIT's operation and then present some empirical studies

of the system's behavior.

I
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2. An Overview of Incremental Concept Formation

There are four characterizing aspects of concept formation: the nature of the instance

descriptions, the nature and organization of the concept descriptions produced, the per-

formance system used in recognition, and the mechanisms used to acquire concepts. As

we describe CLAssrr and its predecessors, we will see how they differ along these four

dimensions. However, they also have much in common; below we attempt to characterize

the underlying approach to concept formation that these systems share. We attempt this

from two perspectives - by examining the relation between learning and the performance

component and by viewing the concept formation process in terms of heuristic search.

2.1 Recognition and Learning

Concepts vary in their specificity; a very general concept will cover a variety of in-

stances, whereas a more specific one will cover only a subset of those instances. This

partial ordering leads naturally to the notion of a concept lierarcby, in which specific con-

cepts are stored below more general concepts of which they are a special case.lFor example,

the concepts for collie and dachshund are specializations of the more general dog concept,

and thus would occur below the latter in a concept hierarchy. Similarly, the concepts for

dog and cat are specializations of the class of quadruped mammals, and so would occur

beneath this node in the hierarchy. All four of the models we will examine use some form

of concept hierarchy.

Such a memory organization suggests a natural algorithm that integrates the processes

of classification (recognition) and learning. The basic approach is to treat the concept

hierarchy as a discrimination network for sorting instances into appropriate categories.

This process occurs recursively at each level of the hierarchy, starting with the most general

node and moving downward:

* At each level, one must decide into which of the alternative categories the instance

should be placed, or whether to create an entirely new category based on that instance.

1 Readers should be careful to distinguish such a concept hierarchy from the partial ordering on concepts

that Mitchell (1982) describes in the context of semarch for an appropriate concept description. The former
is a data structure that exists in memory; the latter is a search space.

2



* If one selects an an existing category, then the definition or description of that category

must be modified to take the new instance into account.

Is One then retrieves the subcategories of this node and recursively applies the same

process to each of these classes, determining the best category and modifying it in

turn.

This process continues until one reaches a terminal node in the concept hierarchy or until

one reaches some desired level of specificity. Note that the act of recognition and the incre-

mental modification of concepts are intimately intertwined in this framework. One cannot

classify an object without incrementally modifying either the structure of the concept hi-

erarchy (by creating a new disjunct) or the definitions of existing concepts. Similarly, one

cannot learn &part from this classification process. All of the systems we Will review have

this integrated character.

2.2 Concept Formation as Search

Another common aspect of the concept formation models we will examine is that all

can be described in the language of heuristic search. As we describe each system, we will

characterize its learning process in terms of their operators for generating new states, their

evaluation function, and their basic search control scheme.

In each case, the basic search space consists of the very large set of distinct concept

hierarchies that can be used to classify the instances. One begins with a degenerate

hierarchy containing a single category based on the first instance. As one encounters new

instances, learning operators alter the hierarchy by adding subcategories at lower levels,

by adding new disjuncts at existing levels, sad by modifying the definitions of existing

categories. Some models also restructure the hierarchy by removing links, removing entire

categories, and combining or splitting categories. Each such modification constitutes a

step through the space of possible concept hierarchies in search of an optimal organization

of knowledge.r

At each point a number of choices present themselves, and the techniques used to select

one choice over another can be viewed as evaluation functions for guiding the search in

promising directions. Intuitively, these functions measure the quality of the alternative

concept hierarchies with respect to the instances they summarize. They tell the system



* when to incorporate an instance into an existing category, when to create an entirely

new category (a disjunct), and when to reorganize the hierarchy in order to recover from

nonrepresentative data. We will see that the existing models of concept formation differ

widely in the evaluation functions they employ, and that this gives their behaviors a quite

different flavor despite the underlying similarity.

3. Earlier Research on Concept Formation

In this section we review in some detail three earlier models of incremental concept

formation - Feigenbaum's EPm, Lebowitz's UNIMEM, and Fisher's COBWEB. We will see

that each system operates within the same basic framework, but also that each system

makes some definite improvements over its predecessors. Taken together, these develop-

ments constitute an evolutionary trend that has led directly to our current research on

concept formation. In each case, we describe the models in terms of their representation

of instances and concepts, their basic learning operations, and their search control and

evaluation function.

3.1 Feienbaum's EPAm

Feigenbaum's EPAM (1963) was the first system to model the process of incremental

concept formation. This system was developed as a psychological model; it replicated

a number of learning phenomena observed in psychological experiments. EPAM uses in-

stance descriptions consisting of a set of structured attribute-value pairs. A discrimination

network is created from these attributes, and some very simple learning operators incre-

mentally modify the concepts produced.

In its most typical domain, instances are simply words - a short sequence of letters.

In effect, each position in the sequence is an attribute, with 26 possible attribute val-

ues. Although EPAM is capable of using instance descriptions with an arbitrarily complex

structure, in this domain, instance descriptions represent a very simple perception of the

The discrimination network in EPAm can be viewed as an early and somewhat degener-

ate version of the concept hierarchies outlined in the preceding section. Each branch point

corresponds to a specific attribute, and instances are classified at that node according to

the value of that attribute. As an instance is classified, the system descends through the

4
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net, looking at different attributes in turn, until a leaf node is reached. Leaf nodes corre-

spond to concepts; this is the only place in the network where EPAM stores an intensional

concept description (which Feigenbaum called an image). The concept description is a set

of relevant attribute values for that concept. When a leaf is reached, either the instance

fails to match the concept and discrimination occurs, or the instance is recognized and

concept familiarisation occurs. These are the two operators EPAM Uses to search for an

optimal concept hierarchy.

The discrimination process creates a new disjunct at a given level in the network. In

EpAm, there is never any question about when to perform this operation. Each distinct

instance is a member of a distinct concept, so whenever the network tries to put two differ-

ent instances together, discrimination must occur. When the net successfully classifies an

instance, familiarization occurs. This is simply the addition of an additional predictable at-

tribute to the concept description. Although in some sense this makes a concept 'stronger',

there is no evaluation function whose value is raised.

The most obvious deficiency of EPAM is the lack of an explicit concept hierarchy.

Although the internal nodes of the discrimination network could by used to define higher-

level concepts, EPAM only uses the concepts at the leaves: there are no explicit subordinate

or super-ordinate concepts. In addition, although one can describe EPAm as searching

through a space of possible categories, the evaluation function used is trivial because

concepts are so exactly defined. In particular, the choice about which operator to apply

is simply 'Does the instance match the category?' Because both the instances and the

concepts are described by a list of symbolic values, the answer is always a simple 'yes' or

'not.

EPAM certainly has many strengths. It was the first system to create concepts incre-

mentally: the discrimination network is created and modified as instances are received.

Although simplistic, concept descriptions are a representation of the instances that make

up that concept. In order to classify or recognize an instance, only some attributes are

inspected: namely those attributes that distinguish the new instance from others in the

network.
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3.2 Lebowits's UNIMEM

In contrast to EPAM, Lebowits's UNIMEM system (1986) uses a general hierarchy of I
concepts, and is designed to work with more complex instance descriptions. UNIaEM

evolved from the idea of Generalization-Based Memory (GBM). Although of obvious im-

portance for an integrated system, the focus of this paper is not memory organization,

which we view as belonging to a somewhat separate system. Therefore we shall touch only

briefly on GBM as we discuss the concept representation of UNIMEM.

UNIMEM was designed to abstract concepts from a number of complex domains. In-

stances are described by attribute-value pairs, and attributes may have numeric as well

as symbolic domains. For example, one test set consists of descriptions of universities

with attributes such as state, private/public control, (symbolic attributes) average SAT

scores, expenses, and number of students (numeric attributes). UNIMEM is incremental:

it uses concept descriptions that summarize the instances, and it builds and modifies the

hierarchy as new instances arrive.

For UNIMEM, the concept descriptions in the hierarchy are called GEN-NODEs; these

make up Generalization-Based Memory. A description consists of a list of predicatable

attribute values (like EPAM), pointers to lower, more specific GEN-NODEs (if there are

any), and a network containing all the instances classified under that node. Finally, there

are 'confidence counters' associated with each of the attributes listed as predictable.

As UNIMEM descends through the hierarchy, it uses the attribute list of each node to

decide if the instance should be classified under that node. If some number of instance

attributes match the attribute list in the concept description, then the instance is placed

in that concept and the process continues with the concept's children. The number of

attributes necessary for this match is a parameter to the system. Note that in some cases,

an instance may be classified in more than one concept.

Eventually a node will be reached where the instance is not placed in any of its existing

children. This can happen at any level of the hierarchy, but it is guaranteed to happen at

the leaf nodes. At this point, either the instance is used to make a new concept node, or

it is added only to the parent concept. A new concept is created only if there is a set of

sufficiently similar instances already residing in the parent node.



Table I

The control structure of UNIMEM

Function UNJMEM:

FIND the most specific concept(s) for the new instance, then, UPDATE each of these
concepts.

Function FIND (new-instance, root):
(a) Increase confidence counters for matched attributes in root; decrease counters for those

not matched. If confidence is low enough, delete attribute. (If enough attributes are
deleted, delete node.)

(b) For each child node with enough attributes that. match the new-instance call FIND
(new-instance, child).

(c) If there are no child nodes that match, return root. Otherwise, return the union of the
recursive calls in step (b).

Fuanction UPDATE (new-instance, node):
(a) If none of the instances stored under node are similar enough to new-instance, then

store new instance under node.

(b) Otherwise, create a new child under node with new-instance and the similar old in-
stances. Remove the old instances from node's instance network.

Each time an instance is placed into a concept, the confidence counters are modified

by the attribute values of the new instance. If the attributes values in the concept do not

match the new instance, then the confidence is decreased. If the confidence falls below a

threshold, then that attribute is removed from the list in the concept description (i.e., the

attribute is no longer sufficiently predictable). In turn, if enough attributes are deleted,

the entire concept is discarded. For a summary of UNIMEM's control structure, see Table 1.

By allowing both numeric and symbolic instance attributes, UNmEm uses a more

general-purpose instance description than EPAM. However, it also increases the complex-

ity of the match process. Once the symbolic domain is abandoned, matching returns a

degree of match rather than a simple match/no match result. To find the degree of match

between two numeric attribute values, Lebowitz uses a statistical distance metric. This is

an important representational issue and we shall return to it in section 4.

Uf UNIMEM places an instance into more than one concept, then concepts are over-

lapping: they do not form disjoint partitions over the instances. In cluster analysis (see

section 4), this has been called clumping. In some domains, overlapping concepts may

more accurately describe the data than disjoint partitions. In addition, clumping is used

7
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to make the search strategy more flexible. If two alternative classifications are suggested,

the system may choose both and then, at some later time, decide to remove one concept or

the other. In effect, UNIMEM is performing a sort of beam search; the duplicated instances

represent a limited set of alternative concept hierarchies.

As UNIMEM searches, it applies a small set of operators to move through the space of

concept hierarchies. These are:

" adding an instance to a concept;

* creating a new concept node;

" removing a concept node.

A set of parameters determine how these operators are used by the system. For example,

the threshold number of attributes in the concept description is a parameter that directly

affects how often concepts are discarded by the system. Similarly, a parameter involving

the number of attributes shared with other instances controls when to formulate a new

concept.

As we have stressed, one of the crucial components for a concept formation system is

the evaluation function that guides the search for an optimal concept hierarchy. UNIMEM

does not have a well-defined, principled evaluation function. Unlike EPAM, there is some

measurement of concept quality based on the number of predictable attributes and the con-

fidence counters on those attributes. This constitutes a kind of evaluation function, since

it controls when various operators are used. For example, if there are too few attributes,

the concept is removed. However, this measurement depends too much on external pa-

rameters. The values chosen for these parameters affects the performance of the system

significantly, but currently, these values are chosen empirically by the researcher instead

of by the system.

Nonetheless, UNIMEM provides an excellent basis for incremental concept formation.

It has clear advantages over EPAM along several dimensions. It uses concept descriptions

with weighted attribute lists, and these are organized into a concept hierarchy. It uses

richer instance descriptions, with numeric as well as symbolic attribute values. These

differences in complexity have led to the idea of a principled evaluation function to be

used at decision points in the classification process. Although we are not satisfied with the

mechanisms used by UNIMEM, the system has provided the basis for our own research.

MI IV



3.3 COBWEB

Fisher's COBWEB system (1987) has retained much of the underlying design of UNIMEM.

COBWEB uses the same data structure, a hierarchy of concepts, and a similar control

structure where the concepts are modified incrementally by each instance. Although there

are many similarities between these two systems, there are two important differences: the

representation of a concept used, and the evaluation of concept quality used to guide the

search for an optimal concept hierarchy.

COBWEB'S concept hierarchy is similar to UNIME M's: a tree of concepts ranging from

general to specific. However, it extends all the way to the most specific concepts possible;

leaf nodes represent individual instances. These concepts divide the instances into mutually

disjoint classes, unlike the clumping of instances allowed by UNIMEM. COBWEB also uses a

similar representation for instances; these are simple sets of symbolic attribute-value pairs.

Like UNIMEM, concept descriptions are a list of attributes with attached weights. How-

ever, the list is an exhaustive one, and the weights are formally interpretable as attribute

value probabilities conditioned on class membership. For instance, a property associated

with the class of birds is that it flies with high probability - e.g., P(flieslbird) = 0.95.

These conditional probabilities represent the proportion of class members with a given at-

tribute value. Smith and Medin (1981) have used the term probabilistic concepts to refer

to concept representations that incorporate conditional probabilities.

The evaluation function used by COBWEB is called category utility and was developed

by Gluck and Corter (1985). Category utility was originally derived (and validated) as a

means of predicting certain effects observed during human classification. 2Category utility

favors classes which maximize the potential to infer information (see Fisher, in press), as

well as being a function that maximizes intra-class similarity and inter-class dissimilarity.

For an attribute value pair, Ai = Vii, and class, Ck, intra-class similarity is measured

in terms of a conditional probability P(Ai = V ilCk); the larger this probability, the greater

2 For example, Roach (1978) has identified certain concepts as 'Basic Level' categories. These categories
are characterised by quick retrieval and recognition. Gluck and Corter propose that their Category Utility
measure is maximized when the concepts correspond to these basic level categories. Since the basic level
categories indicate the 'preferred' categories for humans, we believe that this measure is a good one for
guiding concept formation.

9
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the proportion of class members sharing the same value (Vj), and thus the more predictable

the value is of class members. Inter-class dissimilarity is measured in terms of P(Ck&IA =

Vii); the larger this probability, the fewer objects in other classes share this value, and

thus the more predictive the value is of the class.

The conditional probabilities above only indicate the dispositions of individual at-

tribute values, but these primitive measures of value predictability and predictiveness can

be combined to give an overall measure of partition quality. Specifically,

CU = ~ P(Ai = I)(Q A, = V,)P(A, Vii IC&)

represents a tradeoff between intra-class similarity P(Ai = VIJC&) and inter-class dissimi-

larity P(C& IA, = Vi), that has been summed for all classes (k), attributes (i), and values

(j). The probability P(Ai = %,) weights the importance of individual values, in essence

saying that frequently occurring values are more important than infrequently occurring

ones. This function forms the basis of the more comprehensive measure, category utility.

As COBWEB incorporates new instances into the concept hierarchy, it uses the category

utility measure to decide between one of four operators:

" classifying the object into an existing class;

* creating a new class (a new disjunct);

" combining classes into a single class; and

" dividing a class into several classes.

As we argued earlier, these operators can be viewed in terms of search through the space

of possible concept hierarchies. For COBWEB, category utility is the evaluation function

that controls when each of these operators is used.

The first two operators are similar to ones we have seen before. In order to decide

between them, the following algorithm is used: The new instance is tentatively placed in

each child and category utility is computed for each of these possible partitions. The best

of these (the host that results in the highest value of category utility) is then compared to

the partition resulting if the new instance is used to create a new singleton class at that

level. Again, category utility is used to decide between these two partitions.

10
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Table 2

The control structure of COBWEB

FUNCTION Cobweb (Object, Root (of a classification tree))

(1) Update counts of the Root
(2) IF Root is a leaf THEN Return the expanded leaf to accommodate the new object

ELSE Find that child of Root which best hosts Object and perform
one of the following:

(a) Consider creating a new class and do so if appropriate
(b) Consider node merging and do so if appropriate and recursively

call Cobweb (Object, Merged node)
(c) Consider node splitting and do so if appropriate and recursively

call Cobweb (Object, Root)
IF none of the above (ab, or c) were performed then recursively

call Cobweb (Object, Best child of Root)

While these first two operators are effective in many cases, by themselves they are very

sensitive to initial input ordering. That is, different concept hierarchies will be created from

the same data if the initial set of instances are skewed rather than representative of the

entire set. The next two operators are designed to adjust a concept hierarchy when the

initial observations prove unrepresentative.

These two operators are node merging and node splitting. The function of merging

is to take two nodes from a partition (of n nodes) and 'combine' them in hopes that the I

resultant partition (of n - 1 nodes) is of better quality. The two original nodes are made

children of the newly created node. Although merging could be attempted on all possible

node pairs every time an object is observed, such a strategy would be unnecessarily costly.

Instead, when COBWEB incorporates an object, it only considers merging the two best

hosts (as indicated by category utility). Likewise, node splitting may also serve to increase

partition quality. A node of a partition (of n nodes) may be deleted and its children

promoted, resulting in a partition of n + m - 1 nodes, where the deleted node had m

children. Splitting is considered only for the children of the best host among the existing

categories. A summary of the control of the four operators used by COBWEB is presented

in Table 2.

Node merging and splitting represent inverse operators and allow COBWEB to move

bidirectionaily through a space of possible hierarchies. In general, node merging is invoked



when initial observations suggest that the environment is a space of highly similar objects,

relative to the actual structure of the environment. Node splitting is invoked when the

environment is more 'compressed' than suggested by initial input. Merging and splitting

decrease the sensitivity of COBWiB to input ordering due to their inverse relation to one

another.

4. Modeling the Formation of Object Concepts

With these systems as background, we can turn to CLASSIT, a model of concept forma-

tion that attempts to improve upon the earlier work. This model has been most strongly

influenced by COBWEB, differing mainly in its representation of instances, its represen-

tation of concepts, and its evaluation function. However, CLASSIT uses the same basic

operators and the same control strategy that Fisher's system employs. Below we describe

the differences between the two systems, along with our motivations for introducing these

differences. We also review the two models' learning strategies in terms of the search

metaphor.

4.1 Real-Valued Attributes

Although symbolic or nominal attributes occupy an important role in natural language,

they are much less useful for describing the physical world. When describing a stick

in English, one might say that stick is short or long, but one can also distinguish two

sticks that differ only slightly in length. This latter capability suggests that humans'

representation of real-world objects can include detailed information about the quantitative

features of those objects. A variety of real-world attributes can be described using real

numbers, including features such as color, which are usually treated symbolically. Since we

are concerned with the formation of physical object concepts, we have designed CLASSIT

to accept only real-valued attributes as input.

Later we will present an example of how one can represent physical objects using

numeric attributes. Although this approach represents some relational information (such

2 Statisticians have developed methods for clustering objects described in terms of real-valued attributes;
these go by the names of duster analysis and numerical taxonomy (Everitt, 1974). Unfortunately,
thes methods ae all nonincremental.

12
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as the adjacency of components) implicitly, it does not really restrict the types of objects

that can be described. Furthermore, this form of numeric representation seems a more

plausible output from a perception system.

The introduction of real-valued data requires an analogous extension in one's represen-

tation of concepts. There are two obvious responses. First, One can divide each numeric

attribute into ranges; by 'discretizing' the continuous values, one can retain the symbolic

concept representation used in COBWEB. Lebowitz (1985) has taken this approach in

one version of UNIMEM. Alternatively, one can represent concepts directly in terms of

real-valued attributes.

The CLASSIT model retains COBWEB's notion of a probabilistic representation for

.oncepts, storing a probability distribution with each attribute occurring in a concept.

However, instead of storing a probability for each attribute value as COBWEB does, (e.g.,

P(,mall) = 0.3; P(large) = 0.7), our model stores a continuous normal distribution (bell-

shaped curve) for each attribute. CLASSIT expresses each distribution in terms of a mean

(average) value and a variance. For instance, it might believe that the average length of a

dog's tail is 1.1 feet and that its variance is 0.65 feet. Attributes with low variance have

narrow, tall distributions; attributes with high variance have wide, shallow distributions. In

general, categories lower in the concept hierarchy will have attributes with lower variances,

since they represent more specific classes with greater within-group regularity.

4.2 CLASSIT's evaluation function

CLASSrT's use of real-valued attributes in both instances and concepts requires a gen-

eralization of COBWEB's evaluation function. We would like some measure that retains

the tradeoff between within-group similarity (the ability of a class to predict attributes'

values) and between-group differences (the ability of attributes' values to predict a class).

We cannot use the conditional probabilities in COBWEB's category utility measure, since

these terms are not defined for continuous representations. However, if one assumes a nor-

mal distribution, these terms generalize naturally into statistical measures of variance. 41n

F,-, .i .

4 In general, variance is defined as (. Note that this equation as written cannot be computed

incrementally; all zi values need to be present m order to compute the variance. However, a standard trans-
formation where the squared term is expanded and the sum of squares is stored makes variance incremental.

13
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particular, the within-group similarity (W) becomes the variance of the values in the group

and the between-group difference (B) becomes the variance of the group averages over a

partition:

W V j -= , = 1
w N-J+1

B = j=1

where J is the number of groups, N the number of instances, ,n the number of instances

in group j, Tj the average of group j, and Y the average over all groups in the partition.

Note that the variance for a group is weighted by the number of instances in that group.

Within-group similarity is actually measured by 1/W, since as the variance rises,

within-group cohesion falls. Finally, these equatkns measure the variance of a single

attribute, so we must sum over all attributes to obtain a complete measure of category
quality:'

Category Quality -B

This measure lets CLASSIT find clusterings of instances that maximize within-group simi-

larities and that minimize between-group differences. In order to compute category quality

incrementally, each node in the concept hierarchy must contain a statistical summary for

each attribute in terms of its mean and variance; as we have seen, this corresponds to the

probabilistic concept representation found in COBWEB.

Sif ni = I for all groups in a partition, then W = 0, which leads to division by sero. To avoid
this problem, we use a minimum value for the sum of squares difference, limiting the perceiving ability of
CLASSIT; This limit corresponds to the notion of 'just noticeable differences' in psychophysics - & lower
limit greater than sero to our perception ability.
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4.3 Search Control: Concept Formation as Hill-Climbing

We believe that a reasonable model of incremental human learning should obey an

important constraint: that the learner does not retain competing hypotheses in memory.

For concept formation, this means that for a given set of instances one does not carry

around alternative concept hierarchies. This constraint severely restricts the search strate-

gies available to a learning system. Breadth-first search and beam search techniques both

maintain a frontier of competing hypotheses; depth-first search uses backtracking, imply-

ing that a stack of previously considered hypotheses -are maintained. However, there is a

simple search strategy which obeys this constraint - Ill-climbing- and both CLASSIT and

COBWEB use this strategy to organize their search through the space of possible concept

hierarchies.

Although CLASSIT's representation of instances and concepts has forced us to mod-

ify COBWEB's evaluation function, it does not require any change in the basic learning

operators or in the basic control structure. Thus, CLASSIT includes the same four basic

operators as COBWEB - one for incorporating an instance into a existing concept, another

for creating a disjunctive concept, a third operator for merging two classes, and a final

one for splitting classes. As each new instance is processed, both systems consider all of

the available choices, compute the score of the evaluation function in each case, and select

that choice giving the highest score.

This is the essence of hill-climbing, since the models occupy only one state at each point

and since they have no memory of previous states. Although the merging and splitting

operators allow the systems to recover from earlier decisions, they do not perform real

backtracking. They can allow the system to return to the same structure as previous

hierarchies, but since more instances have been seen, the concept descriptions within the

hierarchy are quite different.

We feel that this type of hill-climbing search should be at the heart of any system that

claims to model the incremental aspects of human learning. Other search mechanisms

make unreasonable assumptions about the nature of human memory. For example, be-

cause they use backtracking, depth-first search methods require one to retain in memory

a complete trace of the hierarchy's growth. Similarly, breadth-first search schemes require

one to maintain an a set of alternative, competing concept hierarchies. The hill-climbing
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organization used in CLASSIT makes minimal demands on memory while providing a robust

framework for incremental learning.

S. A Detailed Example

Now that we have examined CLASSIT's representation, control structure, and evalua-

tion function, let us demonstrate the system's behavior in more detail by stepping through

a sample execution. However, we must first consider the the specific input domain that we

will use in this example and in our later discussions. It should be made clear that CLASSIT

is not restricted to this domain; it can learn any concepts that can be described by a set

of real-valued attributes.

5.1 The Input Domain

We have tested CLASSrT with the domain of quadruped mammals specified in terms

of simple cylindrical descriptions. In particular, these cylinder descriptions are a sim-

plification of Binford's (1981) generalized cylinders. Marr (1982) has argued that this

representation represents a reasonable approximation of the output of a vision system.

This representation of objects is also used by the World Modeler's Project, an on-going

joint research project with J. G. Carbonell, R. Granger, and D. Kibler.

As discussed earlier, an instance description for CLAssrr consists of a set of attribute-

value pairs, where each value is a real number. In this case, each instance is described

by eight cylinder components: head, neck, torso, tail, and four legs. In the runs to be

described, we generated the data so that each instance fell naturally into one of four basic

categories - cats, dogs, horses, and giraffes - depending on the sizes of the cylinders.

Figure I shows a typical instance for each of these classes.

Each cylinder includes attributes such as height, radius, and location, and we present

these to CLASSIT along with the name of the object with which they are associated. Thus,

the system receives attributes of the form 'legl-radius', 'leg2-radius', 'legl-length', 'leg2-

length', and so forth."We typically use nine or ten attributes per cylinder, so that each

By wing identically structured instances (each has the same eight components) and by giving CLASSIT
this smocation between cylinders and component names, we have sidestepped some important issues. We
wl return to then in section T.
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Horse Giraffe

cat Dog

Figure 1. Typical animals.

instances has on the order of 75 attribute-value pairs. We believe that real-world objects

have this order of complexity and that a robust concept formation system should be able

to handle instances of this form.

In producing data for our test runs, we used a template for each basic category (a

'Platonic form') and constructed instances as variations on these categories using a random

number generator. Thus, each instance is a member of one of the four categories; there are

no giraffe/dog hybrids. However, some instances diverge more from the ideal form than

others. The amount of variation is related to a parameter associated with each attribute;

some of these are nearly constant within a category, but others vary widely according to

a normal distribution. Of course, CLASSIT will produce a concept hierarchy from any set
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New instance: dog3

Category Quality: 2.70 8.34 4.31

Figure 2. The hierarchy as dog3 is classified.

of instances, so it is not necessary to use this kind of carefully generated data. However,

using such data greatly simplifies our ability to evaluate the system's performance.

5.2 A Sample Execution

In order to demonstrate CLASSIT's operation, let us now step through a typical execu-

tion using the type of input described above. The system begins with an empty concept

hierarchy. Suppose the first instance is a dog (call it 'dogl'), though this is not known to

the program. This instance is used to create the root node of the hierarchy, creating an

initial concept description with means based on the observed values of attributes and with

minimum variances. Now suppose we present a second instance that is also a dog (call it

'dog2'). By definition, there is always only one concept at the root level of the hierarchy,

so this instance is incorporated into the root concept, generating a new set of means and

variances.

However, this instance differs somewhat from the first observation, so CLASSIT forms

two categories at the second level of the hierarchy, one based on each instance. This gives

the structure shown in dark lines in Figure 2.TWhen a third dog (call it 'dog3') is presented,

the system again incorporates it into the root node.

When the system moves to the second level, there are three alternatives for storing

dog3. CLASSIT can incorporate the new instance into the same class as dogI, it can add it

7 Of course, CLASSIT does not use the names of instances during dassifcation; we have included them
io the sake clarity.

is



New instance: horsel

dogi og2 dog

Category Quality: 17.28 3.19 1490.50

Figure 3. The hierarchy as horsel is classified.

to the class containing dog2, or it can create an entirely new category. Figure 2 gives the

category quality for each of these choices, with the third option (creating a new disjunct)

shown with a dotted line. In this case, the highest score results from placing the instance

in the same category as dog2; effectively, this is because these two instances are the most

similar to each other. In fact, none of the category quality scores are very high, since all

of the instances are relatively close. Shortly we will see cases in which greater differences

result in much higher scores. We should note that these scores are meaningful only for

comparison - their absolute value depends upon the number of attributes in the instances.

Figure 3 shows (in dark lines) the hierarchy after dog3 has been incorporated. Notice that,

although dog2 and dog3 were placed in the same category, they have led to separate classes

at the third level of the hierarchy.

Suppose the next instance is actually a horse. Again the instance is averaged into

the root node, and again there are three choices at the second level. Figure 3 presents

the category quality scores that would result placing the horse in each of the two existing

classes versus creating an entirely new category. In this case there is a very clear preference

for making a new disjunct; the horse is quite different from either of the existing classes

at this level and this is reflected in the high score associated with creating a disjunct.

Finally, suppose the next three instances are horses and giraffes; Figure 4 presents the

hierarchy after these observations have been processed. When a fourth dog is presented,
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New instance: Dog4

Ud"

dogi og2 dog horsel horse2 *raffel girafle2

Category Quality: 5126.79 4980.01 116.74 24.26 3516.00

Zv4krging best two:
6576.61 iae

dog2 dog3 horsel giraffel

Figure 4. The hierarchy as dog4 is classified.

CLASSIT performs a merge operation. Whenever there are more than two groups in a

partition, the system considers merging the best of the two groups. In this case, the two

dog groups have the highest category quality. If these two were merged, the resulting

partition would have a higher category quality than any of the other options, so CLASSIT

selects this action. Figure 5 shows the hierarchy that results from this combination. Note

that the two merged concepts still exist, but they have been moved down a level in the

hierarchy. After merging, the system had to decide how to add dog4 to level 3 - in this

case, a new disjunct was made.

CLASSIT does not halt at this point. The system continues to process new instances,

incrementally modifying both its concept descriptions and the concept hierarchy as it en-

counters new data. Unlike some incremental learning systems - such as Mitchell's (1982)

version space method - CLASSIT never achieves a final knowledge state; the system con-

tinues to learn as long as new instances are available. Contrary to being a weakness, we

believe this is a strength of the model. Human learners behave in this fashion in many

domains, and we suspect there are good reasons for this strategy. One of them involves the

amOblity of concept drift; if the environment has the potential for changing over time,

the learner must continue to modify his conceptual structures in response to new data.
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og dg2do3dog,  horsel horse2 aflgrfe

dogI og2 dog dog4 horsel horse2 giralfel giraffe2

dog2 dg

Figure 5. The hierarchy after classifying dog4.

Although we have not tested CLASSIT under such conditions, we expect it would perform

in a reasonable manner.

6. Experimental Results

In order to evaluate any AI system, one must test that system under a variety of con-

ditions and measure its performance. In this section, we present some experimental results

that demonstrate CLASSIT's robustness along three dimensions: within-group variation,

the class/subclass distinction, and memory limitations. Each of the tests involve the same

basic domain of quadrupeds that we described in the previous section. We conclude by

suggesting some areas for future testing.

6.1 Within-group Variation

Members of a given category vary to different degrees. At one extreme, the variation

is zero; every member of a class is exactly the same. In such a case, one would expect a

concept formation system to be able to find the different classes very easily. This is the

case with CLASSIT. With zero intra-class variation, the I1W term in the category quality

equation rises very quickly and the system converges on the optimal concept hierarchy.
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AVERAGE CATEGORY QUALITY

50,100

19,200

7,400 6,100

exact tight medium loose

WITHIN GROUP VARIATION

Figure 6. Category quality vs. within-group variation.

At the other extreme, the members of a class may differ greatly from the norm of that

class. This should make it more difficult to find the optimal classes. In the worst case,

there may be so much within-group variation that classes are formed randomly. This also

holds for CLASSIT; the system is unlikely to find meaningful classes in such extreme cases.

Figure 6 summarizes the results from an experiment in which we 'defined' four classes

with varying degrees of regularity. The 'exact' condition represents the results of runs on

data with zero variation. The 'tight', 'medium', and 'loose' conditions represent data sets

in which we introduced more and more variance. The scores for each experiment were

averaged over 10 CLASSIT executions, each involving a run on 30 instances. Each score

indicates the category quality of the final hierarchy after the 30th instance was processed.$

The graph shows that as the regularity within each category decreases, the category

quality also decreases. It is difficult to determine whether CLASSrr is actually finding the

optimal clustering in each case, since this would require an exhaustive search of the cius-

tering space. However, we have noted that as variation increases, the system's hierarchies

tend to diverge from the 'desired' hierarchies used to generate the data. Typically, with

greater variation, more than four top-level categories would be identified. This suggests

I Since instances ae created with a random number generator, different executions within a trial can
produce quite different hierarchies.
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that CLASSIT's behavior degrades gracefully as the within-group variation increases. The

system performs well in orderly environments, but its ability falls off gradually as more

'variation occurs.

6.2 Discovering Sub-dlasses

As we noted earlier, concept formation involves more than determining a set of cate-

gories - it also requires the construction of a concept hierarchy. This mean that a robust

concept formation system must be able not only the main classes, but also subclasses and

subsubclasses. It must note not only the major similarities and differences that define the

basic level categories, but also the smaller regularities and variations that define subcate-

gories. A model of concept formation should place beagles and terriers in different classes,

just as it generates different categories for giraffes and dogs.

In order to test this ability, we modified the dog category described earlier so that

members of the dog category always fit into one of two subspecies: long-tailed and short-

tailed dogs. Given these data, CLASSIT successfully formulated two subcategories of the

dog class in 8 out of 10 runs, sorting the expected instances to the correct classes. In the

remaining two runs, the system formed three subclasses - one containing short-tailed dogs

and two containing varieties of long-tailed dogs. These results are preliminary and we need

additional tests involving multiple features and multiple levels, but they are encouraging

nonetheless.

Note that the issue of forming subcategories should interact with the issue of within-

group variation. As one moves down in the concept hierarchy, the categories represent

more specific concepts that, presumably, have less variation among their members. Thus,

one might expect CLASSIT's clustering ability to improve as it considers lower levels of

the hierarchy. However, the between group variance at lower levels also decreases, since

siblings will be more closely related. Whether the system's behavior improves or degrades

at lower levels is an empirical question to be anwered by future testing.

6.3 Memory restrictions

Although human long-term memory appears to be effectively unlimited, it seems im-

plausible that one stores every object ever encountered. Yet earlier models of concept
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formation, in particular UNIMEM and COBWEB, retain complete descriptions of every in-

stance, despite the fact that these descriptions are not needed for the classification process.

At any given partition in the hierarchy, only the summary statistics that describe a concept

are used to classify an instance.

Like the COBWEB system, CLASSIT was originally designed to continue down the hi-

erarchy until it reached individual instances descriptions. However, we have also tested a

version of the system that stops classifying beyond a certain level. This can be thought of

an imposing a simple memory limit on the system. Usually this version will produce the

same concepts above the cut-off level as the unrestricted system. This is because CLAS-

srT rarely uses information stored below its current level. The only operation that uses

lower levels is the split operation, since this promotes children nodes. If this operation

occurs at the cut-off level, then the cut-off and unrestricted versions will produce different

hierarchies.

Although it is possible that a series of splits could cascade this difference up to the top

levels, in practice it rarely happens. In an experiment on 10 'loose' data sets, 6 produced

identical concept hierarchies, 3 hierarchies were different at the cut-off level (in this case,

level 4), and only 1 execution produced a hierarchy where level 3 was altered. Presumably

the chances of the splits cascading up to level 2 would be quite small. Because the cut-

off version is faster than the unrestricted system, we have used it for many of the tests

described above.

6.4 Fuirther Tests

There are at least two additional aspects of the input data that should affect CLASSIT's

behavior. One of these involves the order in which the instances are presented to the sys-

tern; the other involves the number of attributes that are actually relevant in distinguishing

between categories. Although we have kept these factors constant in the experiments de-

scribed above, we plan to vary them in future studies.

If an incremental concept formation system is guaranteed to find the optimal concept

hierarchy, then the order of the input will not affect its output. However, this is precisely

what a hill-climbing strategy (like that used in -CLASSrT) does not guarantee. Given one

ordering of the instances, the system may be fortunate enough to find the optimal hierarchy,

but given another ordering, it may become stuck at a local maximum in the hierarchy
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space. Given a third ordering, the system may get stuck at yet another local maximum.

Preliminary experiments show that CLASSIT is somewhat sensitive to the order of input,

though the merge and split operators help offset this sensitivity. However, the exact nature

of the dependency is not clear. For example, one would expect the system to perform well

if it were given all instances of one class, followed by all instances of another, etc., and

to perform poorly if the instances of various classes were interleaved. Obviously, we need

more rigorous tests to determine the exact nature of the relationship.

The number of irrelevant attributes should also affect CLASSIT's learning behavior. For

example, within the domain of quadruped mammals the position of the tail has the same

variance and mean for all four templates (horse, giraffe, cat and dog). Although it can vary

considerably, this attribute is therefore almost completely useless in distinguishing between

different categories. Since CLASSIT sums over all attributes, it effectively ignores this type

of useless attribute; when two summations are compared, only those terms that differ are

important. In the runs described above, we kept the number of irrelevant features at a

constant level: 24 of the 72 total attributes, or 33 percent. However, it is not clear how the

system would behave if we greatly increased or decreased the number of such attributes;

this is another issue that should be examined in future tests.

7. Directions for Future Research

We believe that CLASSIT constitutes a plausible initial model of human concept forma-

tion and that the system incorporates a number of advances of earlier models. However,

the existing model has a number of limitations that should be remedied in future efforts,

and we discuss these below. Most of them deal with making CLASSIT's input a more

plausible model of the output that might be generated by the human perceptual system.

One problem is that CLASSIT is effectively provided with correspondences between the

various components in instances and concepts. For example, the system is told that the

right front leg in an instance corresponds to the right front leg in the dog concept; there

is no chance the system will confuse the leg in the instance with the tail in the concept

description, or even with a different leg.

Future versions of the model should establish these correspondences for themselves, S

even at the expense of occasional errors. A brute force approach would first compute all

possible mappings between the cylinders in an instance and the cylinders in each concept '
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description, and then determine the optimal match using category quality. For instances

containing eight components, this would be expensive but manageable (8! = 40320). This

scheme would ensure an optimal match, but we prefer a more heuristic approach that

requires less memory and less computation. Using the variances for each attribute in the

concept description, CLAssrr would find a match for that cylinder with the least associated

variation. Using this as a constraint, the system would then find a match for the next mostr

constrained component and so forth, continuing this process until all components in the

concept description had been matched against components in the instance. This 'greedy'

approach is not ensured of finding the best match, but it is likely to find an acceptable one

with minimal cost.

It is possible to conceive a system where this greedy matching algorithm is used as

a pre-processing step to the classification and concept learning processes - after a best

match is found, the component labels could be generated and used as input to the existing

system. However, such an architecture would contain much duplicated effort. We believe

that somehow, the two searches must be occurring simultaneously. That is, as the best

match is determined, the object is classified and concept learning occurs. Integrating these

two processes remains an open problem.

A second problem is that CLASSIT lacks mechanisms for working with hierarchical

objects. Manr (1982) proposes that humans have the ability to describe physical objects

at differing levels of aggregation. Thus, a dog might be viewed as a single cylinder at one

level; at a lower level, this cylinder is decomposed into eight connected cylinders for torso,

neck, head, tail, and legs; at a still lower level, the leg is decomposed into three cylinders

corresponding to the thigh, calf, and foot. In our experiments, we presented CLASSIT with

only the second of these levels. Future versions of the model should be extended to handle

multiple levels of aggregation and to employ these levels intelligently during the match

process. This may also help in comparing objects with different structure, since they may

be comparable at one level but not another.

A third limitation of the current model is its inability to deal with incomplete objects.

If we assume that CLASSIT's input is generated by a vision system, then sometimes compo-

nent objects will be omitted from an instance description because they are not visible. This

means the process of finding correspondences between objects, described above, must be
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extended to handle partial mappings between instances and concepts.'Finding an optimal

partial match leads to even greater combinatorial explosion than finding an optimal partial

match, but again we will not require CLASSIT to find the best of al possible mappings.

In addition, the introduction of hierarchical descriptions will let us keep the number of

objects at any given level down to a manageable size, and this will help keep the search

within reasonable bounds.

A final extension would introduce selective attention during recognition and learning.

The current system inspects every attribute during ilze classification process, even those

that are irrelevant. This may seem unreasonable, but without at least an initial concept

hierarchy, there is no way to know which attributes are important and which are not.

However, as CLASSIT gains experience with the current domain, it collects statistics that

reflect the relative importance of the various attributes. These measures can be used as

a focusing device, suggesting which attributes to inspect and which to ignore. In deter-

mining which category best matches a new instance, the system need only look at those

attributes that are most important for distinguishing between the competing classes. If

these attributes are sufficient to make a clear decision, then the other attributes need never

be inspected. We believe this would make CLASSIT a more plausible model of the human

recognition process.

S. Summary

In this paper, we have tried to develop a unifying framework from which to view

incremental concept formation. This framework identifies two issues: we are interested in

the learning process as a search algorithm, and we are interested in the representational

space used by that search. We have tried to characterize the representation used in both

the domain and range of the system, i.e., both the instance descriptions used as input, and

the concept descriptions produced as output. Viewing learning as search has directed us

An instance might have missing attributes as well as missing objects, but this matter is much less
serious. In such cases, one can simply use the expected (mean) value of the attribute.
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Table 3

A summary of concept formation systems

EPAm I

Input Domain: Symbolic attribute value pair, ability to use structured data.

Output Descriptions: Images (concept descriptions) stored only at terminal nodes of the

hierarchy. An image is a attribute value list.

Evaluation Function: Simple match/no match function.

Learning Operators: Discriminate (create disjunct) and familiarise (add to a node).

UNMEM

Input Domain: Numeric and symbolic attribute value pairs.

Output Descriptions: Weighted attribute lists organised into a concept hierarchy.

Evaluation Function: Parametised, non-uniform evaluation methods.

Learning Operators: Create disjunct, add to concept, remove concept.

COBWEB

Input Domain: Symbolic attribute values.

Output Descriptions: Probabalistic concept descriptions in a concept hierarchy.

Evaluation Function: Category utility.

Learning Operators: Create disjunct, add to concept, merge concepts, split concepts.

CLASSIT

Input Domain: Numeric attribute value pairs.

Output Descriptions: Statistical concept descriptions in a concept hierarchy.

Evaluation Function: Category quality.

Learning Operators: Create disjunct, add to concept, merge concepts, split concepts.

to characterize the evaluation function which guides the system through decision points,

and the set of operators used to move through the search space.

We have presented four different systems and we have tried to evaluate and compare

these systems by using this framework. Table 3 presents a summary of the concept forma-

tion systems described in this paper. Each system is characterized by the four points that

our framework identifies. From this perspective, it is easy to see how closely the systems

are related and that each system makes an improvement over its predecessor. It should be

dear that our current research is based on these earlier concept formation systems.

We have argued that an appropriate search for a learning system is one that is charac-

terized by hill-climbing. This means that the operators used should be kept to a minimum
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and they should not allow arbitrary return to previous hypotheses. We have argued that

this search should be guided by a principled evaluation function. We have also suggested

that instance descriptions consisting of numeric attribute values provide a reasonable input

representation; this representation is plausible as output from a human perception system.

Finally, we have presented a structured hierarchy of concept descriptions as the appropri-

ate output for concept formation. CLASsIT is presented as a system which incorporates

these ideas. We have tried to give some evidence that this system satisfies these constraints

and is reasonably robust under a variety of conditions.

The representation and acquisition of concepts is a complex, interconnected set of prob-

lems, and we will not claim to have solved these problems in any absolute sense. However,

we believe the basic approach we have described - and reflected in EPAm, UNJMEM, COB-

WEB, and CLASSIT - constitutes one of the most promising thrusts towards understanding

the nature of categorization in computational terms. We encourage other researchers to

join in the effort and to construct incremental models of concept formation that extend

the initial results that have been achieved to date.
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